Journal of Organometallic Chemistry, 431 (1992) 17–26 Elsevier Sequoia S.A., Lausanne JOM 22565

Sur la stabilisation d'une germa-imine par effet stérique et mésomérie

Monique Rivière-Baudet et Alain Morère

Laboratoire de Chimie des Organominéraux, URA 477 du CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex (France)

(Reçu le 19 novembre 1991)

Abstract

Delithiochloration of N-lithio-N-dimesitylchlorogermyl-3-amino-2-methyl-thiophoate at low temperature leads to the corresponding germa-imine, stabilized by the steric effects of mesityl substituents linked to germanium and possibly by mesomeric effects with the thiophoate group. This germa-imine, stable at room temperature was characterized by spectrometry (IR, UV, RMN, DCi mass spectrometry). With specific reagents (MeOH, $Et_3NH^+Cl^-$, etc.) the reactivity is different from that of cyclodigermazanes, dimers of germa-imines; stoichiometric addition of MeOH and HCl without cleavage of germanium-nitrogen bond is observed. 3,5-Di-t-butylorthoquinone leads to the expected germadioxolane, through decomposition of the transient 1,4-cycloadduct observed in ¹H NMR.

Résumé

La delithiochloration à basse température du N-lithio N-dimésitylchlorogermyl 3-amino 2-thiophoate de méthyle conduit à la germa-imine correspondante stabilisée par l'effet stérique des radicaux mésityles liés au germanium et la possibilité d'une conjugaison avec le groupement thiophoate.

Cette germa-imine stable à température ambiante a pu être caractérisée par voie physicochimique (IR, UV, RMN et spectrographie de masse en DCi/CH₄). Elle présente vis-à-vis de réactifs spécifiques (MeOH, Et₃NH⁺Cl⁻, etc) une réactivité totalement différente de celle des cyclodigermazanes dimères de germa-imines. Nous avons pu observer notamment l'addition stoechiométrique de MeOH et de HCl sans clivage de la liaison germanium-azote. La réaction avec la 3,5-di-t-butylorthoquinone conduit au germadioxolane attendu, par décomposition du cycloadduit-1,4 instable observé intermédiairement par ¹H RMN.

Introduction

Les travaux publiés ces dernières années dans le domaine des dérivés à germanium doublement lié [1-3] montrent que si l'obtention des germa-imines

Correspondence address: Dr. M. Rivière-Baudet, Laboratoire de Chimie des Organominéraux, URA 477 du CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France.

transitoires hautement réactives est relativement facile, il n'existe à l'heure actuelle que peu d'exemples de synthèse de germa-imines suffisamment stables pour être isolées ou caractérisées par diverses méthodes physico-chimiques [1-3]. Ces dernières ont été obtenues par des méthodes particulières comme: l'interaction germylène-diazoïque [4]; l'interaction germylène-azoture [3,5,6]; la photolyse d'azoture de germanium [7,8]; la deshydratation intermoléculaire entre un dérivé nitrosé et le germane [9].

La réaction d'élimination d'halogénure alcalin, parfaitement adaptée à la synthèse des germaphosphènes (éq. 1) n'a conduit jusqu'à présent dans le cas des N-organohalogénogermyl N-alkyl ou N-aryl amines qu'aux cyclogermazanes correspondants [1,10] (éq. 2a). Lorsque R et R' présentent un effet stérique suffisant, le cyclodigermazane (dimère de la germa-imine) se forme sélectivement [11,12].

$$\begin{array}{ccc} R_2 Ge - PR' & \xrightarrow{-LiX} & R_2 Ge = PR' \\ | & | \\ X & Li \end{array}$$
(1)

Quand une certaine contrainte stérique est atteinte, la réaction d'élimination par délithiohalogénation est difficile [12] et peut même devenir incomplète. Dans certains cas les sels complexés correspondants sont très stables [13a,b] (éq. 2b) et ne conduisent aux métalla-imines que dans des conditions particulières, après échange du groupe partant [13c].

Notre propos était donc d'utiliser des organochlorogermylamines secondaires présentant une liaison germanium-chlore suffisamment activée pour permettre la réaction d'élimination générale (éq. 3) et la formation de germa-imines stables et isolables.

$$\begin{array}{ccc} R_2Ge - NR' & \xrightarrow{(-XH)^*} & R_2Ge = NR' \\ | & | \\ X & H \end{array}$$
(3)

Résultats et discussion

Nous avons observé récemment [14,15] qu'un ligand particulier, le 2-thiophoate de méthyle (TP) lié à l'azote, permettait d'obtenir dans les organochlorogermyl-

^{*} Par deshydrohalogénation sous assistance nucléophile d'une amine ou par delithiohalogénation en présence de 'BuLi.

amines secondaires R₂ClGeNHTP, une activation de la liaison germanium-chlore sous l'assistance nucléophile du groupement ester.

Ce groupement pourrait donc d'une part faciliter la réaction d'élimination dans ces organochlorogermylamines secondaires et d'autre part stabiliser la germa-imine formée par un effet de conjugaison, utilisé par Glidewell dans le cas d'une germa-imine d'un autre type à structure électronique délocalisée [4].

La réaction de deshydrohalogénation de $Et_2ClGeNHTP$ (1b) conduit à un cyclodigermazane parfaitement stable qui a pu être isolé et caractérisé [15]. Il présente notamment en cryométrie et spectrographie de masse, la masse du dimère (Et_2GeNTP)₂ et en IR la bande caractéristique $\nu(Ge-N-Ge) = 844$ cm⁻¹. Il est donc vraisemblablement formé par dimérisation de la germa-imine transitoire instable correspondante (éq. 4).

$$2 \text{ Et}_2 \text{CIGeNHTP} \xrightarrow{2 \text{ DBU}}_{-2 \text{ DBU, HCl}} 2 [\text{Et}_2 \text{Ge} = \text{NTP}] \longrightarrow (\text{Et}_2 \text{GeNTP})_2$$
(4)

Il était donc intéressant d'accroître l'effet stérique autour du germanium dans le but de rendre la germa-imine intermédiaire plus stable et isolable.

A partir de $Mes_2ClGeNHTP$, la réaction de déchlorhydratation en présence d'amine (DBU) devient difficile du fait de l'encombrement stérique et nous avons eu recours au germylamidure de lithium correspondant. La réaction de *N*-lithiation par le ^tBuLi est assez sélective à basse température ($-30^{\circ}C$) et l'élimination de LiCl est observée (éq. a, Schéma 1).

Par contre, pour des températures légèrement plus élevées, à partir de 20°C, on observe la formation de quantités appréciables (10 à 15%) de sous-produits de t-butylation: principalement d'addition du ^tBuLi sur la fonction ester conduisant au composé 4 (éq. b, Schéma 1), dont la nature a pu être confirmée par spectrométrie de masse.

Le produit réactionnel issu de la délithiochloration à basse température a pu être isolé sous forme d'un solide amorphe orangé sensible à l'air ambiant. Sa masse déterminée par spectrographie de masse (DCi/CH₄) est celle du monomère 3. En IR le fait qu'aucune bande ν (Ge-N-Ge) ne soit observée confirme l'absence de formation de polygermazanes en quantité appréciable. L'abaissement, par comparaison à l'amine initiale TPNH₂, de la fréquence ν (C=O) ($\Delta\nu$ (C=O) = -17 cm⁻¹) pourrait s'expliquer par un accroissement de la conjugaison dans 3. Cette hypothèse semble confirmée par l'effet bathochrome observé en UV. En RMN du

¹³C le déblindage du C3 comparativement à TPNH₂ et le blindage du C1' du groupement mésityle comparativement à l'halogénure Mes_2GeCl_2 pourrait s'expliquer par une certaine participation de la forme polarisée 3y. En effet, dans la forme 3x, l'influence du groupement $\supset Ge=N-$ devrait induire un déblindage du C1' alors que dans la forme 3y l'électrophilie renforcée du centre germanié peut induire le blindage observé.

Cependant cette germa-imine, relativement stable thermiquement à température ambiante, apparaît extrêmement sensible à l'hydrolyse. Elle n'a pu être totalement débarrassée des sous-produits réactionnels (< 20%) constitués principalement du produit de t-butylation 4, de traces de gem-diamine $R_2Ge(NHTP)_2$ [14] lorsque le produit initial 1a comporte des traces de TPNH₂, et du produit d'hydratation 9 détecté par IR, RMN, spectrométrie de masse, par comparaison à un échantillon authentique dont la synthèse est décrite ci-après (éq. 11). Elle a cependant pu être caractérisée chimiquement dans diverses réactions reconnues comme spécifiques de ces composés [4,8,9,17,18].

La même germa-imine 3 peut également être obtenue à partir du dimésitylfluorogermylaminothiophoate de méthyle par délithiofluoration à -20° C selon une réaction semblable à celle du Schéma 1.

L'action de 3 sur le chlorhydrate de triéthylamine conduit par addition d'acide chlorhydrique à l'organochlorogermylamine secondaire initiale 1a. Le méthanol s'additionne également sur 3 pour donner l'organométhoxygermylamine secondaire correspondante 5 (Schéma 2) sans clivage appréciable de la liaison Ge-N dans 3. 3 additionne plus difficilement la diméthylamine et par contre s'hydrate très facilement à l'air ambiant.

Schéma 2.

Les composés 5, 8 et 9 ont pu être synthétisés par d'autres voies (éqs. 8–11). $Mes_2GeNHTP + Et_3GeOMe \longrightarrow Et_3GeCl + Mes_2GeNHTP$ (8) $| \\Cl & OMe$ (5)

(8)

$$Mes_{2}GeNHTP + Et_{3}GeNMe_{2} \longrightarrow Et_{3}GeCl + 8$$
(10)

$$Cl$$

$$Mes_{2}GeNHTP + H_{2}O \longrightarrow Me_{2}NH + Mes_{2}GeNHTP$$
(11)

$$Mes_{2} \qquad OH$$
(9)

Les deux réactions d'addition (éqs. 5 et 6, Schéma 2) apparaissent spécifiques des germa-imines. Elles conduisent en effet à un résultat totalement différent de celui observé dans le clivage des cyclodigermazanes de structure similaire [16] (éq. 12).

 $(Y-H = MeOH; Et_3N, HCl) (R = Et)$

La réaction avec la 3,5-di-t-butylorthoquinone à température ambiante donne, vraisemblablement suivant une réaction par transfert monoélectronique [17] un adduit transitoire **6** observé en ¹H RMN. Peu stable, **6** se décompose en germadioxolanne **7** (éq. 7, Schéma 2), comme cela a déjà été observé précédemment pour des structures analogues [17].

En conclusion, les réactions de délithiohalogénation des 3-dimésitylhalogenogermylamino 2-thiophoates de méthyle donne un produit monomère dont les caractéristiques physicochimiques et la réactivité, différentes des cyclo-digermazanes apparaissent caractéristiques d'une germa-imine stable à température ambiante mais encore trop réactive pour pouvoir être isolée pure. Nous projetons d'étendre cette étude à des structures encore plus chélatées, soit en remplaçant le groupement ester du thiophoate par la fonction amide, soit en étendant cette étude à des structures chélatées à cinq chaînons.

Partie expérimentale

Tous les dérivés germaniés préparés ou utilisés ont été manipulés sous rampe à vide en atmosphère inerte (argon ou azote). Tous les solvants utilisés sont rigoureusement anhydres.

Les composés décrits dans ce mémoire ont été caractérisés à l'aide des techniques d'analyses usuelles: CPV: HP 5890 série II (colonne SE 30, référence interne Et_4Ge ou Bu_4Ge); ¹H RMN: Varian EM 360 A à 60 MHz, Bruker AC 80; IR: FT Perkin-Elmer série 1600. Les spectres de masse ont été enregistrés sur spectromètre Rybermag R 1010 H en impact électronique (Ei) ou en ionisation chimique et désorption (DCi, CH₄). Les points de fusion ont été mesurés sur un microscope à platine chauffante Reichert.

Pour le groupement NTP, la numérotation adoptée est celle indiquée dans le Schéma 1.

Préparation de $Mes_2Ge=NTP$ (3)

A partir du chlorure 1a

A une solution de $Mes_2ClGeNHTP$ [14] (2 mmol) dans 4 ml de C_6H_6 , et 3 ml de THF est ajouté lentement à $-30^{\circ}C$ le ^tBuLi (1.9 mmol). Le mélange est

lentement ramené à température ambiante puis abandonné 6 h sous agitation. Il y a précipitation de LiCl éliminé par filtration sur cellite anhydre. Le filtrat orangé obtenu est concentré sous pression partielle et laisse un résidu visqueux. Ce dernier est repris par 2 cm^3 d'éther anhydre. La solution obtenue est centrifugée, canulée dans un tube de Schlenk puis concentrée sous pression partielle (10^{-2}) mmHg) pendant 2 h. Une poudre amorphe jaune orangé est ainsi obtenue: 0.86 g. Rdt. 93%. F 78-80°C. IR (cm⁻¹) (C₆H₆) ν (C=O) 1663; ν (C=C) 1603; (TPNH₂: ν (C=O) 1680; ν (C=C) 1604); (ν (Ge-N-Ge) absent). UV: λ_{max} 325 et 261 nm correspondant, par rapport à TPNH₂ (307 et 256 nm), à un effet bathochrome marqué (solvant: cyclohexane). ¹H RMN (CDCl₃, δ (ppm)/TMS): 6.62, (d, H4); $6.73 (C_6H_2) + 6.75 (H5) (m); 3.79 (s, H7); 2.40 (s, o-CH_3); 2.25 (s, p-CH_3).$ RMN (CDCl₃, δ (ppm)/TMS) 102.54 (C2); 157.27 (C3); 131.20 (C4); 120.27 (C5); 165.69 (C6); 51.10 (C7); Mes 133.89 (C1'); 143.44 (C2'); 129.66 (C3'); 140.04 (C4'); 23.19 (o-CH₃); 21.03 (p-CH₃). Masse: (DCi, CH₄): $(M^{++}+1)$ 468; $(M^{++}+1-CH_3)$ 453; (M + 1 - MeOH) 436. En outre, aucune trace de produit de poids moléculaire élevé (Mes₂GeNTP)_n ou de leurs fragments polygermaniés ne sont observés sur le spectre de masse (Ei ou DCi, CH_4). Cryométrie dans C_6H_6 : trouvée: 457; calculée: 466.

La même réaction effectuée à -20° C puis à 0°C montre la formation d'un produit secondaire 4 détecté et identifié par RMN et spectrographie de masse ($\sim 10-15\%$).

4: IR (cm⁻¹) ν (C=O) 1660 (épaulement); ν (C=C) 1595 (épaulement). ¹H RMN: (CDCl₃, δ (ppm)/TMS) 6.60 (d, H4); 6.71 (d, J(4–5) 5.5 Hz, H5); 1.36 (s, ^tBu); 6.83 (s, C₆H₂); 2.44 (s, o-CH₃); 2.29 (s, p-CH₃). Masse (DCi, CH₄) (M⁺⁺+1) 494.

A partir de Mes₂Ge(F)NHTP

*Préparation de Mes*₂*Ge*(*F*)*NHTP.* A une solution de TPNH₂ (0.135 g; 0.859 mmol) dans 3 ml de benzène est ajouté à 0°C ¹BuLi dans l'hexane (0.859 mmol). Après retour à température ambiante, le mélange est ajouté, à 0°C, sur Mes₂GeF₂ (0.301 g; 0.861 mmol) dissous dans 6 ml de C₆H₆. Après 3 h sous agitation à 20°C, LiF est éliminé par filtration. Le filtrat jaune est concentré sous pression réduite et conduit à 0.395 g de Mes₂Ge(F)NHTP. Rdt. 94%. *Eb.* 145°C/0.15 mmHg. ¹H RMN (CDCl₃, δ(ppm)/TMS): 2.43 (d, *J*(H/F) 1.70 Hz, *o*-CH₃); 2.30 (s, *p*-CH₃); 6.88 (d, *J*(H/F) 0.58 Hz, C₆H₂); 3.81 (s, OCH₃); 7.17 (d, H5); 6.69 (d, d, *J*(4/5) 5.5 *J*(4/F) 2.05 Hz, H4); 7.39 (d, *J*(NH/F) 6 Hz, NH). ¹³C RMN (CDCl₃, δ(ppm)/TMS): Mes: 22.91 (*o*-CH₃); 21.20 (*p*-CH₃); 130.15 (C1'); 143.69 (C2'); 129.67 (C3'); 141.08 (C4'); TP: 103.05 (C2); 155.95 (C3); 131.48 (C4); 120.55 (C5); 165.59 (C6); 51.18 (C7). ¹⁹F RMN (CDCl₃, ppm/CF₃COOH): δ(F) – 83.30 (s, 1). IR (CDCl₃, cm⁻¹): ν(NH) 3327; ν(CO) 1668; ν(COC) 1226. Masse: (Ei): *M*⁺⁻ 487; (*M*⁺ – MeOH) 455; (*M*⁺⁻ – Mes) 368; (*M*⁺⁻ – TPNH) 331.

Préparation de 3. A Mes₂Ge(F)NHTP (0.364 g; 0.749 mmol) dissous dans 2 ml de benzène et 1 ml de THF est ajouté goutte à goutte à -20° C ¹BuLi (0.749 mmol). Après 30 min sous agitation à température ambiante, LiF formé est filtré sur fritté. Le filtrat, après évaporation des solvants conduit à 0.304 g de poudre orange identifiée à 3. Rdt. 87%.

Réaction de 3 avec Et₃NH +Cl⁻

A 3 (0.188 g, 0.4 mmol) en solution dans 3 ml de C_6H_6 est ajouté $Et_3NH^+Cl^-$ (0.058 g, 0.42 mmol). Le mélange est chauffé en tube scellé pendant 18 h à 50°C.

Réaction de 3 avec MeOH

A 3 (0.15 g, 0.32 mmol) en solution dans 2 cm³ de C_6H_6 est ajouté 1.5 cm³ d'une solution de méthanol dans l'éther à 10 g/l (0.47 mmol). On observe une décoloration progressive de la solution du rouge orangé vers le jaune. Le mélange est chauffé à 50°C puis concentré sous pression partielle et le résidu obtenu 0.17 g analysé et identifié par rapport à un échantillon authentique de 5 (*cf.* ci-après). Rdt. 70%.

Préparation de $Mes_2Ge(OCH_3)NHTP$ (5)

A Mes₂Ge(Cl)NHTP (0.652 g; 1.30 mmol) dissous dans 4 ml de C₆H₆, est ajouté Et₃GeOMe (0.505 g; 2.65 mmol). Le mélange est ensuite placé en tube scellé pendant 72 h à 70°C. L'évaporation du solvant et des produits triéthylgermaniés sous 10^{-2} mmHg conduit à 0.526 g d'un résidu visqueux identifié à Mes₂Ge(OCH₃)NHTP (5) pratiquement pur mais indistillable sans décomposition. Rdt. 81%. ¹H RMN (CDCl₃, δ (ppm)/TMS): 6.56 (d, H4); 7.08 (d, J(4/5) 5.5 Hz, H5); 3.79 (s, H7); 6.81 (s, C₆H₂); 7.59 (s, NH); 3.48 (s, GeOCH₃); 2.45 (s, o-CH₃); 2.23 (s, p-CH₃). ¹³C RMN (CDCl₃, δ (ppm)/TMS): Mes: 23.21 (o-CH₃); 21.06 (p-CH₃); 131.20 (C1'); 143.41 (C2'); 129.68 (C3'); 140.05 (C4'); TP: 102.11 (C2); 157.18 (C3); 131.25 (C4); 120.27 (C5); 165.70 (C6); 51.07 (C7); 51.65 (GeOCH₃). IR (C₆D₆, cm⁻¹): ν (NH) 3351; ν (C=O) 1669; ν (COC) 1220. Masse (Ei): M^{+-} 499; (M^{++} - OCH₃) 468; (M^{++} - TPNH) 343.

Préparation de Mes₂Ge(NMe₂)NHTP (8)

(a) A $\text{Mes}_2\text{Ge}(\text{Cl})$ NHTP 1a (0.503 g, 1.00 mmol) dissous dans 3 ml de benzène est ajouté Me_2NLi (1.00 mmol) dans 2 ml de THF. L'addition est légèrement exothermique. Après 3 h sous agitation à 20°C et évaporation des solvants sous pression réduite, le résidu repris par du benzène est filtré. L'évaporation du filtrat sous pression réduite conduit à 0.442 g d'un liquide visqueux orangé identifié à 8. Rdt. 53%.

(b) A **1a** (0.854 g; 1.70 mmol) dissous dans 3 ml de CDCl₃ est ajouté Et₃GeNMe₂ (0.346 g; 1.70 mmol). Après 45 min à 20°C et évaporation du chloroforme et du chlorure de triéthylgermanium sous 10^{-2} mmHg le résidu (0.791 g) est identifié à **8**. Rdt. 91%. ¹H RMN (CDCl₃ δ (ppm)/TMS): 7.10 (d, H4); 6.33 (d, *J*(4–5) 5.5 Hz, H5); 2.54 (s, NCH₃); 3.77 (s, H7); 6.81 (s, C₆H₂); 2.37 (s, o-CH₃); 2.25 (s, *p*-CH₃). ¹³C RMN (CDCl₃, δ (ppm)/TMS): Mes: 22.67 (*o*-CH₃); 21.03 (*p*-CH₃); 133.56 (C1'); 143.12 (C2'); 129.56 (C3'); 139.20 (C4'); TP: 101.06 (C2); 158.15 (C3); 130.69 (C4), 120.77 (C5); 165.64 (C6); 50.96 (C7); 39.43 (NMe). IR (CDCl₃, cm⁻¹): ν (NH) 3333; ν (CO) 1664; ν (COC) 1221. Masse (DCi/CH₄): (*M*⁺⁺+1) 513. (*M*⁺⁺+1 – Me₂NH) 468.

Préparation de Mes₂Ge(OH)NHTP (9)

Le composé 8 (0.440 g; 8.61 mmol) dissous dans 6 ml de benzène est laissé 3 jours à l'air. Il se forme un précipité blanc, insoluble dans le benzène. Ce précipité 0.264 g est lavé 2 fois au benzène puis séché sous pression réduite. Rdt. 63%. F

177–180°C. ¹H RMN (CDCl₃, ppm/TMS): 6.70 (d, H4); 7.15 (d, J(4-5) 5.5 Hz, H5); 3.78 (s, H7); 7.23 (s, NH); 1.59 (s, OH); 6.83 (s, C₆H₂); 2.41 (s, *o*-CH₃); 2.26 (s, *p*-CH₃). ¹³C RMN (CDCl₃, δ (ppm)/TMS): Mes: 23.21 (*o*-CH₃); 21.10 (*p*-CH₃); 132.34 (C1'); 143.23 (C2'); 129.69 (C3'); 140.24 (C4'); TP: 102.28 (C2); 156.79 (C3); 131.38 (C4); 129.51 (C5); 165.61 (C6); 51.12 (C7). IR (CDCl₃, cm⁻¹): ν (NH) 3323; ν (OH) 3631; ν (C=O) 1664; ν (COC) 1224. Masse (DCi/CH₄): (M^{++} +1) 486; (M^{++} +1 – H₂O) 468.

Réaction de 3 sur la diméthylamine

Un échantillon de 3 dissous dans 2 ml de benzène est placé en tube scellé à 60°C pendant 48 h en présence d'un excès de Me_2NH anhydre. L'analyse ¹H RMN du mélange montre la formation de 8 (27%).

Réaction de 3 avec la 3,5 di-t-butylorthoquinone

Dans un tube de RMN purgé à l'argon, 3 (0.019 g; 0.04 mmol) et la 3,5 di-t-butylorthoquinone (0.008 g; 0.036 mmol) sont dissous dans 0.5 cm³ de C₆D₆. A 20°C la solution initiale rouge vire au vert. La réaction suivie par ¹H RMN montre la disparition progressive des signaux de la quinone (δ ('Bu) = 0.83 (s); 1.15 (s)) et l'apparition d'un nouveau produit caractérisé par deux signaux du groupe mésityle différents de ceux du produit initial 3 (δ (o-CH₃) 2.53 et δ (p-CH₃) 2.02 ppm (s)) et δ ('Bu) = 1.20 à 0.90 ppm (s.1) différent de ceux de la quinone initiale.

Après 2 h à environ 30°C (température de la sonde RMN), on voit apparaître les signaux caractéristiques du germadioxolane 7 (*cf.* ci-après). Un chauffage du mélange réactionnel à 60°C accélère la décomposition de l'adduit intermédiaire et conduit majoritairement au produit final 7 (78%). Ce dernier a été identifié à partir de ses caractéristiques spectrales [19] dosé par CPV par rapport à un échantillon authentique et son identité confirmée par spectrographie de masse: $M^{++}= 532$.

7: ¹H RMN (C_6D_6 , δ (ppm)/TMS): 6.63, 7.17 et 7.42 (s) (d, C_6H_2); 2.00 (s, CH₃); 1.65 et 1.39 (s, ¹Bu) [18].

Références

- 1 P. Rivière, M. Rivière-Baudet et J. Satgé, Germanium, Comprehensive Organometallic Chemistry, Vol. 2, Pergamon Press, New York, 1982, Ch. 10, p. 399.
- 2 J. Satgé, Adv. Organomet. Chem., 21 (1982) 241 et J. Organomet. Chem., 400 (1990) 121.
- 3 J. Barrau, J. Escudié et J. Satgé, Chem. Rev., 90 (1990) 283.
- 4 (a) C. Glidewell, D. Lloyd, K.W. Lumbard et J.S. MacKechnie, Tetrahedron Lett., 28 (1987) 343; (b)
 C. Glidewell, D. Lloyd, K.W. Lumbard, J.S. MacKechnie, M.B. Hurtshouse et L.R. Short, J. Chem.
 Soc., Dalton Trans., (1987) 2981: *ibid.*, (1987) 501, (c) C. Glidewell, D. Lloyd et N. Wiberg, Struct.
 Chem., 1 (1990) 151; *ibid.*, 1 (1990) 317.
- 5 M. Veith, S. Becker et V. Huch, Angew. Chem., 102 (1990) 186.
- 6 (a) J. Pfeiffer, W. Maringgele, M. Noltemeyer et A. Meller, Chem. Ber., 122 (1989) 245; (b) A. Meller, G. Ossig, W. Maringgele, D. Stalke, R. Herbst-Irmer, S. Freitag et G.M. Sheldrick, J. Chem. Soc., Chem. Commun., (1991) 1123.
- 7 T. Tsumuraya et W. Ando, Chem. Lett., (1989) 1043.
- 8 M. Rivière-Baudet, J. Satgé et A. Morère, J. Organomet. Chem., 386 (1990) C7.
- 9 H.G. Ang et F.K. Lee, J. Chem. Soc., Chem. Commun., (1989) 310; J. Fluorine Chem., 43 (1989) 435.
- 10 M.F. Lappert, P.P. Power, A.R. Sauger et R.C. Shrivastava, Metal and Metalloïd amids, Wiley, New York, 1980.

- 11 G. Lacrampe, H. Lavayssière, M. Rivière-Baudet et J. Satgé, Rec. Trav. Chim. Pays-Bas, 102 (1983) 21.
- 12 M. Rivière-Baudet, A. Khallaayoun, J. Satgé et M. Ahra, Synth. React. Inorg. Met.-Org. Chem., (1992) sous presse.
- 13 (a) R. Boese et U. Klingebiel, J. Organomet. Chem., 315 (1986) C17; (b) D. Stalke, U. Pieper, S. Vollbricht et U. Kinglebiel, Z. Naturforsch., Teil B, 45 (1990) 1513; (c) S. Walter, U. Klingebiel et D. Schmidt-Bäse, J. Organomet. Chem., 412 (1991) 319.
- 14 M. Rivière-Baudet, P. Rivière, A. Castel, A. Morère et C. Abdennadher, J. Organomet. Chem., 409 (1991) 131.
- 15 M. Rivière-Baudet et A. Morère, Phosphorus, Sulfur and Silicon and the Related Elements, 62 (1991) 211.
- 16 A. Khallaayoun, A. Morère et M. Rivière-Baudet, Main Group Met. Chem., 14 (1991) 89.
- 17 M. Rivière-Baudet, P. Rivière, A. Khallaayoun, J. Satgé et K. Rauzy, J. Organomet. Chem., 358 (1988) 77.
- 18 M. Veith, A. Detemple et V. Huch, Chem. Ber., 124 (1991) 1135.
- 19 P. Rivière, A. Castel, J. Satgé et D. Guyot, J. Organomet. Chem., 315 (1986) 157.